Lecture Notes:

• Parametric equations express both x and y coordinates as a function of a third parameter, often called t. One way to interpret this is to think of t as "time" where x(t) is the x-coordinate of a moving point at time t and y(t) is the y-coordinate of the point at the same time. In each of the following examples, draw the start/end points and the direction of motion.

To graph, we can also eliminate the parameter t by solving for t in terms of one of the other variables and substituting.

$$\frac{x-1}{2} = t$$

$$y = -3t = -3\left(\frac{x-1}{2}\right) = -\frac{3}{2}x + \frac{3}{2}$$

To eliminate the parameter: $t = \frac{y+1}{2}$, so $x = \left(\frac{y+1}{2}\right)^2$.

Example 3:

$$\begin{cases}
x(t) = \cos(t) \\
y(t) = \sin(t) \\
0 \le t \le 2\pi \\
\text{or, } \langle \cos(t), \sin(t) \rangle
\end{cases}$$
0.5

0.5

0.5

Something to point out: If we have $\pi \leq t \leq 3\pi$, we have the same circle but with a different start/end point. If we have $0 \leq t \leq 4\pi$, we go around the circle twice.

We can't eliminate the parameter, since arcsin and arccos have limited range, so we won't recover all values of t. (Also this curve is neither a function of x nor a function of y.)

-
$$\begin{cases} x(t) = \cos(t) \\ y(t) = \sin(4t) \\ 0 \le t \le 2\pi \\ \text{or, } \langle \cos(t), \sin(4t) \rangle \end{cases}$$

Since $\sin(4t)$ completes 4 periods in $0 \le t \le 2\pi$ and $\cos(t)$ completes 1 period in $0 \le t \le 2\pi$, we see that as the x-values cycle 1, 0, -1, 0, 1, the y values cycle 0, 1, 0, -1, 0 four times.

I might hook my computer up to the projector and show this on Desmos.

- If we're thinking of parametric equations as the movement of a point over time, we can expand our idea to include movement in 3D space. In order to do this, we need to be able to graph in 3D space!
 - Draw a 3-axis graph and draw some points. (E.G. (0,0,0), (0,0,2), (0,2,1), (1,0,1), (-1,2,3).)

Example 1:

$$-\begin{cases} x(t) = 1 + 2t \\ y(t) = -3t \\ z(t) = t \\ -1 \le t \le 1 \end{cases}$$

or,
$$\langle 1+2t, -3t, t \rangle$$

t	x(t)	y(t)	z(t)
-1	-1	3	-1
-1/2	0	3/2	-1/2
0	1	0	0
1/2	2	-3/2	1/2
1	3	-3	1

z

Example 2:

$$\begin{cases}
x(t) = 2t \\
y(t) = 2t - 1 \\
z(t) = t^2 \\
0 \le t \le 2
\end{cases}$$

or,
$$(2t, 2t - 1, t^2)$$

t	x(t)	y(t)	z(t)
0	0	-1	0
1/2	1	0	1/4
1	2	1	1
3/2	3	2	9/4
2	4	3	4

z

This is a good example to talk about traces—they've seen y(t) = 2t - 1, $z(t) = t^2$ as x(t), y(t) in Example 2 of the previous section, so they can recognize that trace in the y-z plane.

Example 3:

$$-\begin{cases} x(t) = \cos(t) \\ y(t) = \sin(t) \\ z(t) = t \\ 0 \le t \le 2\pi \end{cases}$$

or,
$$\langle \cos(t), \sin(t), t \rangle$$

z

Example 4:

$$-\begin{cases} x(t) = \cos(t) \\ y(t) = \sin(t) \\ z(t) = \cos(t) \\ 0 \le t \le 2\pi \end{cases}$$

or, $\langle \cos(t), \sin(t), \cos(t) \rangle$

- They can now attempt the matching activity. I would plan on presenting or having someone present the "pringle".